HOMEWORK DEPOT STUDY SHEETS

Number Sense:

Multiplication \& Division Chart
When multiplying/dividing two integers, two negatives becomes a positive. One negative \& one positive become a negative.

$(+) \times(+)$	$i e:(-3) \times(2)=-6$
$(+) \times(-)$	$(15) \div(-3)=-5$
$(-) \times(+)$	$(-21) \div(-7)=3$
$(-) \times(-)$	$(-3)(-7)(-2)=$

Adding/Subtracting Negative Numbers Note: Use number line:
$\begin{array}{llllllllllllllllllll}-10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array} 10$
$1^{\text {st }}$ number is where you start
$2^{\text {nd }}$ number is which way you go.
(-'ve) \Rightarrow Left (+ 've) \Rightarrow Right
$3^{\text {rd }}$ Use multiplication chart to resolve the sign in the middle.
ie: $5-(-3) \Rightarrow 5+3,-17+(-2)=-17-2$

Ex: Add or Subtract the following:

i) $-8+(3)=-5$ ii) $-9+(-2)=-9-2=-11$

$$
\begin{aligned}
& \underset{-8}{\sim}-7-6-5^{-4} \\
& -\frac{n}{-12-11-10-9-8}
\end{aligned}
$$

iii) $-350-(-120)$
iv) $-80-(-200)$
$=-350+120=-230$
$=-80+200=120$
$\overbrace{-350-330-230}^{+20}$

$$
-\frac{+100}{+80} \underbrace{+100}_{-120}
$$

Factor: A number that divides evenly into another given number
Greatest Common Factor: (GCF)
The largest factor that is common to two or more numbers.
Keep dividing by a common factor and then multiply all the common factors.
Ex: Find the GCF of 48 and 72:
248,72 ie: Divide both numbers by 2
$6[24,36$ Divide by 6
24,6 Divide by 2
$12,3 \rightarrow$ LCD: $(2 \times 6 \times 2)=24$
Prime Number: A number that only has 2 factors, 1 and itself.
ie: $2,3,5,7,11,13,17,19,23,29 \ldots$..tc. Mixed Fraction to Improper Fractions:
When changing a mixed fraction to an improper fraction, multiply denominator by the whole number and then add the numerator.
Note: the denominator does not change
ie: Convert from Mixed to Improper:
$4 \frac{2}{3}=\frac{3}{3}+\frac{3}{3}+\frac{3}{3}+\frac{3}{3}+\frac{2}{3}=\frac{14}{3}$
$(3 \times 4)+2=14$
$3 \frac{7}{11}=\frac{11}{11}+\frac{11}{11}+\frac{11}{11}+\frac{7}{11}=\frac{40}{11}$
$(11 \times 3)+7=40$

Ch 1 Number Connections:

1.1 Exponents \& Powers:

Exponential Form(Power)	Factored Form	Standard Form
2^{4}	$2 \times 2 \times 2 \times 2$	16
$5^{3} \times 5^{2}$	$(5 \times 5 \times 5) \times(5 \times 5)$	3125

The number in exponential
form is called a power.

Ex: Simplify in Exponential form:
i) $7^{4} \times 7^{2} \div 7^{3}=\frac{(7 \times 7 \times 7 \times 7) \times(7 \times 7)}{(7 \times 7 \times 7)}=7^{3}$
ii) $\left(5^{2}\right)^{3}=\left(5^{2}\right) \times\left(5^{2}\right) \times\left(5^{2}\right)=5^{6}$

1.2 Integral Exponents:

Standard Form		Exponential Forms	
Decimal	Fraction	Posit. Exp.	Neg. Exp.
10,000		10^{4}	
1,000		10^{3}	
100		10^{2}	
10		10^{1}	
1	$\frac{1}{10}$	$\frac{10^{0}}{10^{1}}$	10^{-1}
0.1	$\frac{1}{100}$	$\frac{1}{10^{2}}$	10^{-2}
0.01	$\frac{1}{1,000}$	$\frac{1}{10^{3}}$	10^{-3}
0.001	$\frac{1}{10,000}$	$\frac{1}{10^{4}}$	10^{-4}
0.0001			

1.4/1.5 Writing in Scientific Notation:

Large Numbers have a positive exponent.
Small Numbers have a negative exponent.

Ex: Write in Scientific Notation:

i) $175000=1.75 \times 10^{5}$
ii) $0.000074=7.4 \times 10^{-1}$

Convert from Scientific to Standard Form

Steps:
Positive exponent \rightarrow move decimal right Negative exponent \rightarrow move decimal left The exponent shows many digits moved

Ex: Convert to Standard Form:

i) $1.53 \times 10^{5}=153000$ ii) $2.73 \times 10^{-4}=0.000273$

1.6 Rational Numbers

Rational Numbers: Numbers that can be written as a fraction. Includes all integers, fractions, mixed numbers, terminating \& repeating decimals.
Ie: $100, \frac{3}{2}, \frac{-5}{-6}, 1.73,1 . \overline{211}, \sqrt{9}$

1.11 Squares and Square Roots

$2 \times 2=4 \rightarrow \sqrt{4}=2$
$10 \times 10=100 \rightarrow \sqrt{100}=10$
$(-15) \times(-15)=225 \rightarrow \sqrt{225}=15$
Note: Square root of a number is positive

Ch 2: Operations with Fractions

Finding Lowest Common Multiple: LCM Keep dividing by a common factor and then multiply all the common factors with the last pair of numbers:

Ex: Find the LCM of 48 and 72:

848,72 ie: Divide both numbers by 8
36,9 Divide by 3
$1 \mid 2,3$ No more common factors
LCM $=(8 \times 3 \times 2 \times 3)=144$
2.2/2.3 Adding \& Subtracting Fractions When adding or subtracting fractions, find the lowest common denominator(LCD). Only if denominators are the same, then you can add/subtract the top.
Ex: Simplify:
$\frac{3}{4}+\frac{2}{3} \quad$ LCD: $\langle 4,3\rangle=12$ ii) $\frac{7}{8}-\frac{3}{6} \operatorname{LCD}:\langle 8,6\rangle=24$
$\frac{9}{12}+\frac{8}{12}$ Add only $\quad \frac{21}{24}-\frac{12}{24}$ Subtract only
$\frac{17}{12}$ the top $\frac{9}{24}$ the top
2.5/2.6 Multiplying \&Dividing Fractions

When multiplying fractions, simplify by cancelling out common factors in both the numerator and denominator.
Ex: Simplify by Multiplying:

$\frac{16}{21} \times \frac{14}{24}$	Common Factor: 7,8	ii) $\frac{15}{36} \times \frac{27}{35} \times \frac{14}{12}$	Common Factor: 5,9
$\frac{2}{3} \times \frac{2}{3}$	Multiply tops \&bottom	$\frac{3}{4} \times \frac{3}{7} \times \frac{14}{12}$	Common
$\frac{4}{9}$		Factor: 7,3	
		$\frac{3}{4} \times \frac{1}{1} \times \frac{2}{4}$	
		$\frac{3}{4} \times \frac{1}{1} \times \frac{1}{2}=\frac{3}{8}$	

Note: When cancelling common factors, you can cancel up \& down only, not sideways.
When dividing fractions, flip the second fraction (reciprocal) and then simplify by multiplying.
Ex: Simplify by Dividing:
$\frac{6}{14} \div \frac{4}{21}$ Flip second fraction $\frac{12}{49} \div \frac{36}{28} \div \frac{44}{18} \quad \begin{gathered}\text { Flip fractions } \\ \text { divided }\end{gathered}$
$\underline{6} \times \underline{21}$ Simplify $\frac{12}{4} \times \frac{28}{36} \times \underline{18}$ Simplify
$\overline{14} \times \frac{1}{4}$
$\frac{12}{49} \times \frac{28}{36} \times \frac{18}{44}$
$\frac{3}{2} \times \frac{3}{2}=\frac{9}{4}$
$\frac{3}{7} \times \frac{4}{9} \times \frac{9}{22}$

$$
\frac{3}{7} \times \frac{2}{1} \times \frac{1}{11}=\frac{6}{77}
$$

Order of Operations: BEDMAS

When simplifying expressions with more than one operation: (), $\div, \times,+,-$
$1^{\text {st }}$ Simplify Brackets first
$2^{\text {nd }}$ Exponents
$3^{\text {rd }}$: Multiply/Divide from left to right
$4^{\text {th }}$ Add/Subtract from left to right

Ex: Simplify:

$$
\begin{aligned}
& \text { i) }(3-5)^{2} \times 3 \div 2 \\
& =(-2)^{2} \times 3 \div 2 \\
& =4 \times 3 \div 2 \\
& =12 \div 2=6 \\
& \text { ii) }\left(\frac{8}{3}\right)-\frac{2}{8} \times \frac{8}{3}+\frac{1}{2} \\
& =\frac{8}{3}-\frac{2}{3}+\frac{1}{2} \\
& =\frac{6}{3}+\frac{1}{2} \\
& =\frac{12}{6}+\frac{3}{6}=\frac{15}{6}=\frac{5}{2} \\
& \text { Brackets }(3-5)=-2 \\
& \text { Exponents }(-2)^{2}=4 \\
& \text { Multiply then Divide } \\
& \text { Multiply } \\
& \text { Add/Subtract } \\
& \text { from left to right } \\
& \text { Simplify: LCD } \\
& \text { iii) }\left(\frac{3}{2}+2 \frac{5}{8}\right) \times 1 \frac{13}{3} \quad \text { Mixed fractions to improper } \\
& =\left(\frac{3}{2}+\frac{21}{8}\right) \times \frac{16}{3} \quad \text { Simplify Brackets } \\
& =\left(\frac{12}{8}+\frac{21}{8}\right) \times \frac{16}{3} \quad \text { Add fractions } \\
& =\frac{39}{8} \times \frac{16}{3}=26
\end{aligned}
$$

2.7/2.8 Mult/Div. Rational Numbers When multiplying rational numbers, convert them to fractions if possible. If not, then multiply by brute force or calculator.
$\frac{1}{2}=0.5 \quad \frac{1}{5}=0.2 \quad \frac{1}{8}=0.125 \quad \frac{1}{9}=0 . \overline{11}$
$\frac{1}{3}=0 . \overline{3} \quad \frac{1}{6}=0.1 \overline{6} \quad \frac{2}{8}=0.250 \quad \frac{2}{9}=0 . \overline{22}$
$\frac{1}{4}=0.25 \quad \frac{1}{7}=0 . \overline{142857} \quad \frac{3}{8}=0.375 \quad \frac{3}{9}=0 . \overline{33}$
Ex: Multiply:
i) 0.125×0.5
ii) 1.4×0.25
iii) 3.66×0.3

$$
\begin{aligned}
& =\frac{1}{8} \times \frac{1}{2} \\
& =\frac{1}{16}
\end{aligned}
$$

$$
=\frac{14}{10} \times \frac{1}{4}
$$

$$
=\frac{366}{100} \times \frac{1}{3}
$$

$$
=\frac{3.5}{10}=0.35
$$

$$
=\frac{122}{100}=1.22
$$

When dividing rational numbers, multiply both numbers by 10,100 , or 1000 to eliminate the decimal places.
Ex: Divde
i) $0.3 \div 0.15=\frac{0.3 \times 100}{0.15 \times 100}=\frac{30}{15}=2$
ii) $-.275 \div 0.25=\frac{-0.275 \times 1000}{0.25 \times 1000}=\frac{-275}{250}=\frac{-11}{10}$

Applications of Fractions:
Ex: $1 / 3$ of a class have black hair \& $2 / 5$ have
blonde hair. If there are 30 students in the class, how many have neither black or blonde hair?
$1 / 3$ of $30=10$
$2 / 5$ of $30=12$
$30-22=8$ students have neither black or blonde hair.
Ex: John has $\$ 500$. He spent $1 / 5$ on his car and $2 / 3$ of what was left on rent. How much money is left?
$1 / 5$ of $\$ 500=\$ 100(\mathrm{car}) \rightarrow \$ 400$ left
$2 / 3$ of $\$ 400=\$ 266.66($ rent $)$
$\$ 500-100-266.66=\$ 133.33$ left

Ch3: Ratio and Rate
3.2: Equivalent Ratios and Proportions Ratios compare 2 or more numbers with the same unit. Reduce the ratio by dividing all numbers by the GCF. Ratios can also be written as a fraction.
ie: $3: 4 \rightarrow 3 / 4$
Reducing a ratio does not change its value.
Ex: If there are 20 boys and 15 girls in a class, what is the ratio of boys to girls.
20:15 20boys:15girls

$$
4: 3 \quad \text { Divide by common factor of } 5
$$

Ex: There are 50 chocolate bars in a box. The ratio from O'Henry to Mars to Aero bars is $3: 4: 1$. How many of each are there? OHenry: Mars: Aero

$$
3 x: 4 x: 1 x \quad \text { " } x " \text { is a scale factor }
$$

$$
3(5): 4(5): 1(5) \quad 8 x=50 \rightarrow x=5
$$

15:20:5 $\mathbf{5}$ 15 O' Henry, 20 Mars, 5 Aero

3.4: Rate

Rates compare 2 numbers with different units.
Ex: Tom ate 30 burgers in 20 minutes. At what rate can he eat burgers?
Divide $: \frac{30 \text { burgers }}{20 \mathrm{~min} .}=1.5$ burgers $/ \mathrm{min}$

3.5: Unit Rates and Unit Prices

Unit rate: a rate where the $2^{\text {nd }}$ term is 1
Unit price: the cost for 1 unit of an item.
For unit prices, dollar value goes on top, and unit amount at the bottom.
Ex: 25 donuts at Tim Hortons cost $\$ 5.00$. What is the unit price for 1 donut?
Unit Pr ice $=\frac{\$ 5.00}{24 \text { donuts }}=\$ 0.21 /$ donut
Ex: Job A pays $\$ 5000$ in 10 days. Job B pays $\$ 3000$ in 6 days. Find unit rate for each job \& compare which job pays better?
Find the unit rate of pay for each job
JobA: $\frac{\$ 5600}{10}=\$ 560 /$ day
Job A pays more
JobB : $\frac{\$ 3200}{6}=\$ 533.33 /$ day
Ex: Jake ran 75 m in 11 seconds \& Tom ran 200 m in 28 seconds. Find the unit rate for each person and compare who is faster.
Jake $: \frac{75 \mathrm{~m}}{11 \mathrm{~s}}=6.81 \mathrm{~m} / \mathrm{s}$
Tom : $\frac{200 \mathrm{~m}}{28 \mathrm{~s}}=7.14 \mathrm{~m} / \mathrm{s}$

3.6: Scale Drawings

A scale drawing is an exact representation of an actual object that is reduced or enlarged to fit into a drawing.
All scale drawings have a scale that shows how much an object is enlarged or reduced.
Drawing Ratio : Actual Object Ratio
ie: If scale is $1: 5$, then actual object is 5 times bigger than drawing.
If scale is $5: 1$, then actual object is 5 times smaller than drawing.

Ex: The drawing of a bug is 3 cm long. The scale is $5: 1$. How long is the actual bug? The bug is 5 times smaller than the drawing $\rightarrow 3 \mathrm{~cm} \div 5=0.6 \mathrm{~cm}$
The bug is 0.6 cm or 6 mm long.
Ex: The drawing of a house is 11 cm tall. The scale is $1: 150$. How tall is the house? The house is 150 times bigger than the drawing. $\rightarrow 11 \mathrm{~cm} \times 150=1650 \mathrm{~cm}$
The house is 1650 cm or 16.5 m tall.

3.7: Maps \& Scales

To convert units in the metric system: mm, $\mathrm{cm}, \mathrm{m}, \& \mathrm{~km}$, use the following chart.

Ex: Convert 5000000 mm to m .
To move from mm to m , you divide by 10 and then by 100 . This is the same as dividing by $1000: \div 10 \& \div 100 \rightarrow \div 1000$

$$
5000000 \mathrm{~mm} \div 1000=5000 \mathrm{~m}
$$

Ex: Simplify the scale: $1 \mathrm{~cm}: 500000 \mathrm{~km}$

$1^{\text {st }}$ convert 500000 km to cm .

$$
500000 \times 1000 \times 100=50,000,000,000 \mathrm{~cm}
$$

The ratio is then $1: 50,000,000,000$. Do not need units b / c both units are the same.
Ex: The scale of a map is $1: 200,000$. If a lake is 3 cm long on the map, how big is the actual lake in km ?
$1^{\text {st }}$ the lake is 200,000 times bigger $3 \mathrm{~cm} \times 200000=600,000 \mathrm{~cm}$
$2^{\text {nd }}$ Convert $600,000 \mathrm{~cm}$ to km .

$$
600,000 \div 1000=600 \mathrm{~km}
$$

Ch 4: Percents

A percent is a ratio comparing a number to 100. 45% is 45 out of 100

$$
\begin{aligned}
& 60 \% \rightarrow 60 / 100=0.6 \\
& 57 \% \rightarrow 57 / 100=0.57
\end{aligned}
$$

4.2/4.8: Finding Percent of a Number

When asked to find the "\% of a given number", multiply the \% by the number. ie; 20% of $300=0.20 \times 300=60$
Ex: 22.5\% of 2700 students in Beaver High are from Asia. How many students are from Asia?
$0.225 \times 2700=608$ students
$\mathrm{Ex}: 15 \%$ of a number is 57 . Find the number. Note: it's 15% "of" an unknown number" x "

$$
\begin{aligned}
& 0.15(x)=57 \text { divide both sides by " } x \text { " } \\
& x=57 \div 0.15 \\
& x=380 \quad 15 \% \text { of } 380 \text { is } 57
\end{aligned}
$$

Ex: 20% of a number is 12 . Find 5% of that number.
Note: it's 20% "of" an unknown number" x "

$$
\begin{array}{ll}
0.20(x)=12 & 5 \% \text { of } 60 \\
x=12 \div 0.20 & =0.05 \times 60 \\
x=60 & =3(5 \% \text { of }
\end{array}
$$

$=3(5 \%$ of the number is 3$)$

4.3: Estimating with a Percent

When estimating with percents, round the number to the nearest dollar or percent.

Ex: Find 33% of $\$ 895$

$33 \% \rightarrow 30 \%$
30% of $\$ 900 \rightarrow 0.3 \times \$ 900=\$ 270$
$\$ 895 \rightarrow \$ 900$
Ex: Sara wants to give a 15% tip for a $\$ 85$ dinner. How much tip should be given?
10% of $\$ 85 \rightarrow 8.50 \quad$ total tip $=8.50+4.25$
5% of $\$ 85 \rightarrow 4.25=12.75$

4.4: Discount \& Sale Price

Discount: A reduction in cost for an item
Ex: A $\$ 400 \mathrm{Mp} 3$ is on sale at 35% off.
What is the discount \& sale price?
Discount : $0.35 \times \$ 400=\$ 140$
SalePrice : $\$ 400-140=\$ 360.00$

4.5: PST \& GST

PST: Provincial Sales Tax
GST: Goods \& Services Tax
GST,PST,HST in Canadian Provinces 2007

	GST	PST	HST	Nun	6%	
Alb	6%			Ont	6%	8%
BC	6%	7%		PEI	6%	10%
Man	6%	7%		Queb	6%	7.5%
NB			14%	Sask.	6%	5%
NFL			14%	Y.T.	6%	
NS			14%	NWT	6%	

Ex: If PST \& GST are both 7\%, what is the total cost of $\$ 25$ hat?
PST : $0.07 \times \$ 25=1.75$
GST : $0.07 \times \$ 25=1.75$
TotalstCost : $\$ 25+1.75+1.75=\$ 28.50$

4.6: Commission

A wage that a salesperson would get based on a percentage of their sales. To find commission, multiply $\%$ with total sales.
Ex: John earns a 5\% commission. How much will he earn if has $\$ 3000$ in sales? Commission : $0.05 \times \$ 3000=\$ 150$

Ex: Cindy earns $\$ 15 / \mathrm{hr}$ and a 3% on commission. How much does she earn if she worked $35 \mathrm{hr} \& \$ 20,000$ in sales?
Hourly: ${ }^{\$ 15} / h r \times 35 h r=\$ 525.00$
Commission : $0.03 \times \$ 20,000=\$ 600 .{ }^{00}$
Total : $\$ 525+\$ 600=\$ 1125 .{ }^{00}$
4.10: Simple Interest
$I=P \times r \times t \quad I:$ Interest Earned
P : Principal, \$ in beginning
r : InterestRate : decimal form
T :Time, \# of years - Divide by 12 (months)
Divide by 52(weeks), Divide by 365(days)
Ex: Jerry deposited $\$ 3500$ for 8months at 2.5% interest rate. How much interest will he earn?
$P=\$ 3500, r=0.025, t=8 / 12$
$I=(3500)(0.25)(8 / 12)$
$I=\$ 58 .{ }^{33}$

Ch5: Patterns \& Relations:

5.1: Variables \& Expressions:

Algebraic Expression: $3 x-8 y+7 x y$
Terms: $3 x, 8 y, 7 x y$
Variables: x, y : The value of a variable can change to whatever you assign them.

When evaluating, substitute the variable with the values they are given.
Ex: Evaluate, Given $x=2, y=1$
i) $3 x-2(y+1)$ ii) $-4(3 x+y)$
$=3(2)-2(1+1)=-4(3(2)+1)$
$=6-4=2=-4(7)=-28$

5.2: Formulas

When finding formulas from a table of values, look for patterns.
Ex: Find a formula for each TOV.
i)

x	-1	3	6	9	12
y	9	5	2	-1	-4

Pattern: the sum of each pair adds to 8
Formula: $x+y=8$

ii) | x | -1 | 3 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 4 | 8 | 11 | 14 | 17 |

Pattern: y is 5 more than x
Formula: $x+5=y$
Ex: The equation for the surface area
of a cylinder is $S=2(3.14) r^{2}+2(3.14) r \times h$
Find the area when $r=4 \mathrm{~cm} \& h=6 \mathrm{~cm}$.
$1^{\text {st }}$ plug in values for $r \& h$
$S=2(3.14)(4)^{2}+2(3.14)(4) \times(6)$
$S=2(3.14) 16+2(3.14) 24$
$S=100.48+150.72$
$S=251.2 \mathrm{~cm}^{2}$

5.3: Finding Ordered Pairs

With any function, every value for x will generate one value for y. Every pair of $x \& y$ can be mapped onto a grid as a point.

When finding ordered pairs, pick a few values for x and use the formula to find the values for y.

Ex: Find 5 ordered pairs from $y=3 x-5$
$1^{s t}$: Let $x=0,1,2,3,4$
$2^{\text {nd }}$: Solve for y Ordered Pairs:
$x=0, y=3(0)-5 \rightarrow y=-5 \quad(0,-5)$
$x=1, y=3(1)-5 \rightarrow y=-2$
$x=2, y=3(2)-5 \rightarrow y=1$
$x=3, y=3(3)-5 \rightarrow y=4$
$x=4, y=3(4)-5 \rightarrow y=7$
,
Ex: Which of the following is not an ordered pair for: $2 y+3 x=8$
$(2,1),(1,2),(4,-3)$
$(2,1): 2(1)+3(2)=8$
$(1,2): 2(2)+3(1)=7 \leftarrow$ Not Ordered Pair
$(4,-3): 2(-3)+3(4)=8$
5.4/5.5 Graphing Co-Ordinates (x, y)

Each coordinate is mapped onto a grid as a single point.

$\qquad(x, y)$
x-coordinate Positive: right Negative: left
y-coordinate Positive: up Negative: down

The origin is the center of the graph with coordinates of $(0,0)$
Ex: Indicate the co-ordinates for each of the following points:

Ex: Graph the following points, indicate what shape it is.
Graph each point and connect the dots $A(-1,2) B(4,3) C(-3,-3) D(2,-2)$

5.6 Graphing Relations:

When graphing a relation:
Make a table of values,
Plot each point on the grid,
Make a title for the graph,
Label both axis, and label a few points.
Ex: A school wants to build a rectangular fence of 20 m around a playground. Write an algebraic expression for the perimeter
ii) Make a table of values \& iii) Graph the relations

> i) $2 w+2 L=20 \quad$ ii) | x | 1 | 2 | 4 | 5 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y | 9 | 8 | 6 | 5 | 4 | 2 |

Ch 6: Solving Equations:

6.1: Writing Equations

Terms:

Sum:Add
Product: Multiply
Difference: Subtract Quotient: Divide
Ex: Write an equation that describes the sentence.
i) Eight less than a number is 12 :

$$
x-8=12
$$

ii) Three more than double a number is 21

$$
2 x+3=21
$$

iii) The sum of a number and six more than double a number is 50 .

$$
x+(6+2 x)=50
$$

6.2:/6.3 Solving Eq. by Add/Subtract

When solving for x, the goal is to isolate x. Do the opposite of what x is doing. If x is adding a number, then subtract that number on both sides.
Ex: Solve for x :
i) $x+5=11$
ii) $x-7=11$
$x+5-5=11-5$
$x-7+7=11+7+7$
$x=6$
$x=18$
6.4/6.5: Solving Eq. by Mult/Div.

If x is multiplying a number, then divide that number on both sides. In contrast, if x is dividing a number, than multiply that number on both sides. Do the opposite.

Ex: Solve for x :
i) $3 x=15$
ii) $\frac{x}{4}=12$
$\frac{3 x}{3}=\frac{15}{3}$
$4\left(\frac{x}{4}\right)=4$
$x=5$
$x=48$

When both sides have a denominator, multiply both sides with the LCD to cancel out the denominator.
$E x$: Solve for " x "
i) $\frac{x}{4}=\frac{8}{3}$
LCD: 12
ii) $\frac{5}{x}=\frac{2}{3}$ LCD: $3 x$
$12\left(\frac{x}{4}\right)=12\left(\frac{8}{3}\right)$
$3 x\left(\frac{5}{x}\right)=3 x\left(\frac{2}{3}\right)$
$3 x=32$

$$
15=2 x
$$

$x=\frac{32}{3}$
$\frac{15}{2}=x$

6.6 Liketerms:

Liketerms have the same variables with the same exponents.
ie: $3 x, 11 x,-170 x$ are liketerms
$8 x, 3 x^{2}$ are not liketerms because the exponents of x are not the same.
Note: You could add or subtract terms ONLY if they are liketerms

Ex: Add or Subtract:

i) $3 x+5 x=16$
ii) $6 x+8 x^{2}=14$
$8 x=16$
$6 x \& 8 x^{2}$ not liketerms
$x=2$
Can't add them
iii) $6 x+5=8 x \quad$ Move liketerms to one side $6 x+5-6 x=8 x-6 x$
$5=2 x$
$2.5=x$

6.7: /Distributive Prop.

When a number is in front of a bracket, expand that number with every term inside the brackets.

```
3(5x+3)=15x+9
```

ie: $2 x(4-3 x)=8 x-6 x^{2}$

6.8/6.10:Solving Eq. with Several

 Steps$1^{\text {st }}$ Use Distribute Property to simplify all brackets
$2^{\text {nd }}$ Move all liketerms to one side and combine liketerms
$3^{\text {rd }}$ Isolate " x "

Ex: Solve for $\mathbf{x "}$

i) $\quad 9 x+12=7 x+6 \quad$ Move all liketerms $9 x-7 x+12-12=7 x-7 x+6-12$ to one side $9 x-7 x=6-12$
$2 x=-6$
$x=-3$
ii) $7=\frac{x}{3}+2 x \quad$ Multiply all terms by LCD: 3
$3(7)=3\left(\frac{x}{3}\right)+3(2 x)$ Cancel out Denominators

$$
\begin{aligned}
21 & =x+6 x \\
21 & =7 x \\
3 & =x
\end{aligned}
$$

iii) $3(2 x-4)=9 x+3$
$6 x-12=9 x+3$
$6 x-6 x-12-3=9 x-6 x+3-3$
$-12-3=9 x-6 x$ $-15=-3 x$ $5=x$
Problem Solving:
Ex: Mark has 12 dollars more than Jack.
The sum of all their money is 40 , how
much money does each person have?
Let Jack's money be x
Let Mark's money be $x+12$
Jack's money + Mark's money $=40$
$x+(x+12)=40$
$2 x+12=40$
$2 x=28$
$x=14 \rightarrow$ Jack has $\$ 14$, Mark has $\$ 26$
Ex: The sum of three consecutive integers is 72 . Find the numbers:
Consecutive means that the numbers are in order. Ie: $1,2,3 \ldots 33,34,35$.
Let the numbers be: $x, x+1, x+2$
$(x)+(x+1)+(x+2)=72$
$3 x+3=72$
$3 x=69$
$x=23 \rightarrow 23,24,25$ are the numbers

All rights reserved. Copyright www.BCMath.ca
©Homework Depot, Vancouver, Canada Author: D.G.W. Y.

Ch 7: 2 Dimensional Polygons
Polygon: A 2D shape with 3 or more sides Triangle(3), quadrilateral(4), pentagon(5), hexagon(6), heptagon(7), octagon(8), nonagon(9), decagon(10), dodecagon(12).... Perimeter: Distance around a polygon Area: Space inside a polygon

7.1/7.2: Pythagorean Theorem

The Pythagorean Theorem can only be used with a Right Angle Triangle:
Hypotenuse MUST be the longest side. It is the opposite from the right angle
The Base and Height can be switched back and forth
Ex: Tom walks 70 m East and 85 m South. How far is Tom from where he started?
$1^{\text {st }}$ find a,b,c: $a=70, b=85, c=x$
70 m

$$
x^{2}=70^{2}+85^{2}
$$

? 85 m

$$
\begin{aligned}
& x^{2}=12125 \\
& x=\sqrt{12125}=110 m
\end{aligned}
$$

Tom is 110 m from where he started.

Ex: Find the height of the triangle:

$a=x, b=40, c=60$

Formula	NOTES
7.5 Circumference Circle ($\pi=3.14$) $C=2 \pi r=\pi d$	Circumference is the distance around the circle. The formula depends on whether if you have the radius or the diameter. Diameter $=$ radius $\times 2$
$\begin{aligned} & \text { 7.9 Area - Circle } \\ & A=\pi r^{2} \end{aligned}$	Area is the space inside circle. You must have the radius to use the formula. $(r=d \div 2) \&\left(r^{2}=r \times r\right)$
Area - Rectangle $\xrightarrow{\stackrel{A=l \times w}{ }} \underset{\text { L }}{ }$	Area of a Rectangle is just length times width. Note: For Squares, the length \& width of a square are the same
Area -Triangle $A=\frac{b \times h}{2}=0.5 \times b \times h$	The area of a Triangle is half of a rectangle. Therefore it is divided by 2. The base \& height must be perpendicular.
Area Parallelogram	Area of a Parallelogram is the same as a rectangle. The length is the base. The height is the width.

Ex: Find the AREA of each shape:
i) Base $=4 \mathrm{~cm}$, Height $=5 \mathrm{~cm}$

ii) Base $=6 m$, Height $=x$??

10 m	$1^{\text {st }}:$ Find height $10^{2}=6^{2}+x^{2}$	$A=\frac{1}{2}(b \times h)$
$100=36+x^{2}$	$A=\frac{1}{2}(8 \times 6)$	
6 m	$\sqrt{64}=8=x$	$A=24 \mathrm{~cm}^{2}$

iii) Diameter $=8 \mathrm{~cm}$

7.10: Composite Figures:

Composite Figure: A 2D shape made up of 2 or more polygons.
Ex: Find the Area of the shape

$A_{2}=L \times W \quad A_{1}+A_{3}=\pi(r)^{2} \quad$ Total $=16+12.6$
$A_{2}=4 \times 4 \quad A_{1}+A_{3}=\pi(2)^{2} \quad=28.6 \mathrm{~cm}^{2}$
$A_{2}=16 \mathrm{~cm}^{2} \quad A_{1}+A_{3}=12.6 \mathrm{~cm}^{2}$

Ex: Find the Perimeter

$$
\begin{array}{ll}
1^{s t}: \text { Circum }: & 2^{n d}: \text { Perimeter }: \\
C=3 / 4(\pi)(6)^{2} & P=84.8+6+6 \\
C=84.8 \mathrm{~cm} & P=96.8 \mathrm{~cm}
\end{array}
$$

Ex: Find the area of the green part: Big Circle $r=4 \mathrm{~cm}$, Small Circle $r=2 \mathrm{~cm}$

Area $=$ Big $($ Circle $)-2 S m($ circle $)$
$A=\pi(4)-2(\pi)(2)^{2}$
$A=50.3-25.1$
$A=25.2 \mathrm{~cm}^{2}$

Ch8: 3-Dimensional Solids

8.1: 3D Solids

Polyhedra: 3D solid where all sides are made of polygons
Prism: A solid where opposite sides are same \& sides are rectangles
Pyramid: A solid with a base at the bottom \& all sides are triangles that meet at the top.

Naming 3D Solids

Use the base to find the description \& then write "prism" or "pyramid".

Examples of descriptions:

Triangle \rightarrow Triangular
Rectangle \rightarrow Rectangular
Pentagon \rightarrow Pentagonal
Hexagon \rightarrow Hexagonal
Ie : If the base is a triangle and it's a prism \rightarrow Triangular Prism

8.2: Surface Areas:

The area of all the sides added together. Draw a "Net" to find the Surface Area (SA).

Top \& bottom are circles. The rectangle has a length equal to the circumference.

Get the area of all six sides and then add them up.
Triangular Prism
$S A=2$ (Tri.) +3 (Rectangles)
Note: Triangle $=\left(\frac{b \times h}{2}\right)$

Rectangular Prism Top \&Bottom : $2 \times(l \times w)$
Front \&Back: $2 \times(l \times h)$
Left \& Right: $2 \times(w \times h)$
Triangular Prism $S A=2($ Tri. $)+3$ (Rectangles)
Note: Triangle $=\left(\frac{b \times h}{2}\right)$
Triangular Pyramid
SA = Sum of 4 Triangles

8.3: Volume:

The space inside the 3D solid. For Prisms,
the volume is always given by:

| Vol. of Prisms $=($ Area of Base $) \times($ Height of Prism $)$ |
| :--- | :--- |

$\xrightarrow[L]{L=L \times W \times H}$

Rectangular Prism
The base is $L \times W$, and the height is H. Therefore the volume is $L \times W \times H$.

Triangular Prism

The base is a Triangle $\left(\frac{b \times h}{2}\right)$ and
the height is H. Multiply the area
of the triangle with the height.
Remember: Base and Height must
be perpendicular

When finding the Surface Area, draw a net for the solid. Find the area of each surface separately and add them.
Ex: Find the SA of each solid:

S. Area $=2(\mathrm{~A} 1)+2(\mathrm{~A} 2)+2(\mathrm{~A} 3)$
S. Area $=2(3 \times 4)+2(4 \times 2)+2(2 \times 3)$
S. Area $=2(12)+2(8)+2(6)$
S. Area $=52 \mathrm{~cm}^{2}$

S. Area $=2 \bigcirc+$
S. Area $=2(\pi)(3)^{2}+(18.85)(2)$
S. Area $=94.2 \mathrm{~cm}^{2}$

To find the Volume of a prism, first get the area of the base. Then multiply it with the height.
Ex: Find the Volume of each solid:
i) Diameter $=8 \mathrm{~cm}$, Height $=2 \mathrm{~cm}$

$$
\xrightarrow{8} \begin{aligned}
& V=8 \div 2=4 \mathrm{~cm} \\
& V=\pi r^{2} h \\
& V=\pi(4)^{2}(2) \\
& V=100.5 \mathrm{~cm}^{3}
\end{aligned}
$$

ii) Base $=5 \mathrm{~cm}$, Hypotenuse $=13 \mathrm{~cm}$, Height of Prism $=11 \mathrm{~cm}$. Use pythagorus to find " h ".

$$
\begin{array}{ll}
1^{s t} \text { Find " } h^{\prime \prime} & 2^{\text {nd }} \text { Volume } \\
h^{2}+5^{2}=13^{2} & \text { V }=(\text { Area base }) \times(\text { height }) \\
h^{2}=169-25 & V=(1 / 2)(5)(12) \times(11) \\
h=\sqrt{144}=12 & V=330 \mathrm{~cm}^{3}
\end{array}
$$

8.5: Composite Solids:

A 3D solid made up of 2 or more solids. When finding volumes of composite solids: separate the shape into different prisms or pyramids. Find volume of each shape separately \& add/subtract.
Ex: Find the volume of each composite solid:

$$
\begin{aligned}
& \text { Vol }=(3 \times 4 \times 9)+(5 \times 4 \times 5) \\
& V o l=(l \times w \times h)+(L \times W \times H) \\
& V=\left(308 \mathrm{~cm}^{3}\right. \\
& V=2+\left(\frac{b \times h}{2}\right) \times L \\
& \text { Volume }= \\
& \text { Volume }=(l \times w \times h)+ \\
& \text { Volume }=(15 \times 7 \times 8)+\left(\frac{7 \times 9}{2}\right) \times 15
\end{aligned}
$$

Volume $=1312.5 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& V o l= \\
& V o l=1 / 2(b \times h) \times H-\pi r^{2} H
\end{aligned}
$$

$V=1 / 2(10 \times 8) \times 20-\pi(3)^{2} 20$ $V=234.8 \mathrm{~cm}^{2}$

CH 9 Geometry:

9.1/9.2: Angle \& Lines

Transversal: Line crossing 2 parallel lines Terms for Angles:
Complimentary: $2 \angle ' s$ that add to 90°
Supplementary: $2 \angle ' s$ that add to 180°
Acute: \angle ' s less than 90°
Obtuse: \angle ' s between 90° and 180°
Straight: $\angle ' s$ equal to 180°
Vertically Opposite: Equal \angle ' s opposite to each other at an intersection ie: $\angle 1 \& \angle 3, \angle 2 \& \angle 4, \angle 6 \& \angle 8, \angle 5 \& \angle 7$
Corresponding Equal \angle ' s that correspond at different intersections from two parallel lines
ie: $\angle 1 \& \angle 5, \angle 2 \& \angle 6, \angle 3 \& \angle 7, \angle 4 \& \angle 8$
Alternate Interior Equal $\angle ' s$ that form the " Z " with the parallel lines
ie: $\angle 4 \& \angle 6, \angle 3 \& \angle 5$
Co-Interior Supplementary $\angle ' s$ on the same side of a transversal between two parallel lines ie: $\angle 4 \& \angle 5, \angle 3 \& \angle 6$ Co-Exterior Supplementary $\angle ' s$ on the same side of a transversal on the outside of the two parallel lines. ie $\angle 2 \& \angle 7, \angle 1 \& \angle 8$

Ex: Find all missing angles:

9.4:Angles in Triangles

Note:The 3 Angles in a triangle add to 180°
Terms for Triangles
Equilateral: Δ with all 3 angles/sides equal
All $3 \angle ' s$ are equal to 60°.
Isosceles: Δ with all 2 angles/sides equal
Scalene Δ with no equal angles/sides
Right Angle: Δ with 1 angle equal to 90°
Obtuse: Δ with 1 angle greater than 90°
Acute: Δ with 3 angles less than 90
Ex: Find all missing angles:

$\angle 1=55^{\circ}$: Isosceles \triangle
$\angle 2=70^{\circ}: \angle ' s$ in $\triangle=180^{\circ}$
$\angle 3=125^{\circ}$: Suppl. $\angle ' s$

$\angle 1=\angle 2=75^{\circ}:$ Isosceles \triangle
$\angle 3=75^{\circ}$: Corresponding $\angle ' s$
$\angle 4=105^{\circ}$:Supplimentary $\angle ' s$ $\angle 5=105^{\circ}$: Alternate Interior $\angle ' s$

9.5: Angles in Polygons

Formula: Sum of all angles in a polygon:

$$
S=(n-2) 180^{\circ} \quad n: \text { number of sides }
$$

Ex: Find the sum of all the angles in a pentagon.
1st: Pentagon has 5 sides $\rightarrow n=5$
$S=(5-2) 180^{\circ}$
$S=(3) 180^{\circ}$
$S=540^{\circ}$

A pentagon can be turned into 3 triangles. $3 \times 180^{\circ}=540^{\circ}$
Ex: Find the sum of all the angles in a polygon with 120 sides.
$1^{s t}: n=120$

$$
S=(120-2) 180
$$

$$
S=21240^{\circ}
$$

Ex: Find the value of the missing angle

$$
\begin{aligned}
& 80^{80} 140^{\circ} \times \begin{array}{l}
\text { The solid is a hexagon, so } \\
\text { The sum of all the interior } \\
\text { angles is } S=4 \times 180^{\circ}=720^{\circ}
\end{array} \\
& \qquad \begin{aligned}
& 150^{\circ} x+145+130+80+150+140=720 \\
& x+645=720 \\
& x=75^{\circ}
\end{aligned}
\end{aligned}
$$

9.3 Line of Symmetry

A line that cuts a shape into two symmetrical halves.

Ex: Find all lines of Symmetry:

Ch 10: Statistics \& Probability

10.1/10.2: Analyzing Data

Statistic:The science collecting, organizing and analyzing data
Survey: a process of collecting data from other people
Sample: a small group that is surveyed to represent a population
Population: The entire group is being studied.
A survey is to be unbiased, where everyone has an equal chance of being selected.
Frequency: the number of times something occurred.
To find the "Percent" divide the amount in each category by the total value.
Ex: A class of 50 students was surveyed on what their favourite color was. Use the chart to answer the following questions.

Colour	Frequency	Percent
Blue	15	$15 / 50=30 \%$
Yellow	12	$12 / 50=24 \%$
Red	8	$8 / 50=16 \%$
Green	9	$9 / 50=18 \%$
Orange	6	$6 / 50=12 \%$

i) Which color is the most popular? Blue
10.3/10.4/10.5: Bar/Line/Circle Graphs

Bar Graphs - Compares the amount of diiferent things
Line Graphs - Shows how something progresses over a period of time.
Circle Graphs: Shows how something is divided into smaller parts.
Ex: Draw a Bar Graph showing which color is the most popular:

Ex: Draw a Circle showing how the class was divided on their colors:
To Find the angle, multiply each percent by 360

10.7 Mean, Median, Mode, \& Range

Mean: average of all the numbers. Add all the numbers then divide by how many there are.
Median: The middle number when all the terms are arranged from least to greatest. If two numbers are in the middle, then take the average of the two.
Mode:The number that appears the most. Range:The difference between the biggest and the smallest value.
Ex: Given the set of numbers, find all the measures of central tendency.
$3,6,11,4,5,5,8,1,5$
Mean $=\frac{3+6+11+4+5+5+8+1+5}{9}=\frac{48}{9}=5 . \overline{33}$
Median : $1,3,4,5,5,5,6,8,11 \rightarrow 5$
Mode:5 Range:11-1=10
10.11/.12 Probability \& Indep. Events Probability: The likelihood of an event, ranging from 0 to 100%.

$$
\operatorname{Pr} \text { obability }=\frac{\# \text { of Desired Outcomes }}{\text { Total } \# \text { of Outcomes }}
$$

Independent Events: Events that do not affect each other. If events are independent, multiply their outcomes.
Ex: Two dice are rolled. What is the probability of getting a sum greater
than 9 ?
Create a sum chart

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Ex: A coin \& dice is rolled. What is the probability of getting a H \& 3?
$\operatorname{Pr}=($ head $) \times($ Dice $: 3) \quad$ independent events!
$\operatorname{Pr}=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}$

