

$\underset{A=-}{\overset{\pi=3.14159265...}{\text{Math}}} \underbrace{\overset{2}{1}}_{A=-} \underbrace{\overset{1}{1}}_{A=-} \underbrace{\overset{2}{1}}_{A=-} \underbrace{$

This study sheet provides a general review of all topics in the BC Math 8 Principles curriculum. For an extensive online lesson of each topic, visit www.BCMath.ca

Number Sense: Multiplication & Division Chart

When multiplying/dividing two integers, two negatives becomes a positive. One negative & one positive become a negative.

$(+)\times(+)$ +	$ie:(-3)\times(2)=-6$
$(+) \times (-)$ -	$(15) \div (-3) = -5$
$(-) \times (+) -$	$\left(-21\right)\div\left(-7\right)=3$
$(-) \times (-) +$	(-3)(-7)(-2) = -42

Adding/Subtracting Negative Numbers Note: Use number line:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

 1^{st} number is where you start 2^{nd} number is which way you go.

 $(-'ve) \Rightarrow Left (+'ve) \Rightarrow Right$

 $3^{\rm rd}$ Use multiplication chart to resolve the sign in the middle.

ie: $5-(-3) \Rightarrow 5+3$, -17+(-2) = -17-2

Ex: Add or Subtract the following:

i) $-8+(3)=-5$ ii)	-9 + (-2) = -9 - 2 = -1
-8 -7 -6 -5-4	-12 <mark>-11</mark> -10 -9 -8
iii) - 350 - (-120)	iv) - 80 - (-200)
=-350+120=-230	=-80+200=120
+20 +100	+100 +100
-350-330 -230	- <mark>80</mark> 20 -120

Factor: A number that divides evenly into another given number Greatest Common Factor: (GCF)

The largest factor that is common to two or more numbers.

Keep dividing by a common factor and then multiply all the common factors.

Ex: Find the GCF of 48 and 72:

2 48,72 ie: Divide both numbers by 2

6 24,36 Divide by 6

2|4,6 Divide by 2

 $1|2,3 \rightarrow \text{LCD}:(2 \times 6 \times 2)=24$

Prime Number: A number that only has 2 factors, 1 and itself.

ie: 2,3,5,7,11,13,17,19,23,29...etc. Mixed Fraction to Improper Fractions:

When changing a mixed fraction to an improper fraction, multiply denominator by the whole number and then add the numerator.

Note: the denominator does not change

ie: Convert from Mixed to Improper:

 $4\frac{2}{3} = \frac{3}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} + \frac{2}{3} = \frac{14}{3} \qquad (3 \times 4) + 2 = 14$ $3\frac{7}{11} = \frac{11}{11} + \frac{11}{11} + \frac{11}{11} + \frac{7}{11} = \frac{40}{11} \qquad (11 \times 3) + 7 = 40$

Ch 1 Number Connections: 1.1 Exponents & Powers:

Exponential	Factored	Standard
Form(Power)	Form	Form
2^4	$2 \times 2 \times 2 \times 2$	16
$5^3 imes 5^2$	$(5 \times 5 \times 5) \times (5 \times 5)$	3125

The number in exponential form is called a power.

ie: 5 to the power of 3.

5³ Exponent

Power

Ex: Simplify in Exponential form:

 $\mathbf{i})\mathbf{7}^{4}\times\mathbf{7}^{2}+\mathbf{7}^{3}=\frac{\left(\mathbf{7}\times\mathbf{7}\times\mathbf{7}\right)\times\left(\mathbf{7}\times\mathbf{7}\right)}{\left(\mathbf{7}\times\mathbf{7}\times\mathbf{7}\right)}=\mathbf{7}^{3}$

ii) $(5^2)^3 = (5^2) \times (5^2) \times (5^2) = 5^6$

1.2 Integral Exponents:

1

Standard Form		Exponential Forms		
Decimal Fraction		Posit. Exp.	Neg. Exp.	
10,000		10^{4}		
1,000		10^{3}		
100		10^{2}		
10		10^{1}		
1	83888888	10^{0}	8838383838	
0.1	$\frac{1}{10}$	$\frac{1}{10^{1}}$	10^{-1}	
	10	10-		
0.01	$\frac{1}{100}$	$\frac{1}{10^2}$	10^{-2}	
0.001	$\frac{1}{1000}$	$\frac{1}{10^3}$	10 ⁻³	
	1,000	10*		
0.0001	$\frac{1}{10,000}$	$\frac{1}{10^4}$	10^{-4}	

1.4/1.5 Writing in Scientific Notation: Large Numbers have a positive exponent. Small Numbers have a negative exponent.

Ex: Write in Scientific Notation: *i*) $175000 = 1.75 \times 10^5$ *ii*) $0.000074 = 7.4 \times 10^{-5}$

Convert from Scientific to Standard Form Steps:

Positive exponent \rightarrow move decimal right Negative exponent \rightarrow move decimal left The exponent shows many digits moved

Ex: Convert to Standard Form:

i) $1.53 \times 10^5 = 153000$ *ii*) $2.73 \times 10^{-4} = 0.000273$

1.6 Rational Numbers

Rational Numbers: Numbers that can be written as a fraction. Includes all integers, fractions, mixed numbers, terminating & repeating decimals.

Ie: 100, $\frac{3}{2}$, $\frac{-5}{-6}$, 1.73, 1. $\overline{211}$, $\sqrt{9}$

1.11 Squares and Square Roots $2 \times 2 = 4 \rightarrow \sqrt{4} = 2$

 $10 \times 10 = 100 \rightarrow \sqrt{100} = 10$

 $(-15) \times (-15) = 225 \rightarrow \sqrt{225} = 15$ Note: Severe post of a number

Note: Square root of a number is positive

Ch 2: Operations with Fractions Finding Lowest Common Multiple: LCM

Keep dividing by a common factor and then multiply all the common factors with the last pair of numbers:

Ex: Find the LCM of 48 and 72:

8 48,72 ie: Divide both numbers by 8

- 3 6,9 Divide by 3
- 12,3 No more common factors

 $LCM = (8 \times 3 \times 2 \times 3) = 144$

2.2/2.3 Adding & Subtracting Fractions

When adding or subtracting fractions, find the lowest common denominator(LCD). Only if denominators are the same, then you can add/subtract the top.

Ex: Simplify:

2.5/2.6 Multiplying & Dividing Fractions When multiplying fractions, simplify by

When multiplying fractions, simplify by cancelling out common factors in both the numerator and denominator.

Ex: Simplify by Multiplying:

6	14	Common	15	27	14	Comm	on
21	24	Factor: 7, 8	¹¹⁾ 36	$\overline{35}$	12	Factor:	5, 9
2	2	Multiply	3	3_14		Commo	n
3	3	tops ⊥	4	7^{12}		Factor: 7	7, 3
4			3_1	2 ک			
•			4 1	$\hat{4}$			
			3_1	1	3		
			4 1	$\hat{2}$	8		
Ter	to' I	Whon concoll	ingo	mm	m f	octore	1101

Note: When cancelling common factors, you can cancel up & down only, not sideways.

When dividing fractions, flip the second fraction (reciprocal) and then simplify by multiplying.

Ex: Simplify by Dividing:

6 4 Flip second	ii) 12 . 36 . 44 Flip fractions
$14 \cdot 21$ fraction	$\frac{11}{49}$ $\frac{128}{28}$ $\frac{18}{18}$ divided
$6 \times \frac{21}{21}$ Simplify	$\frac{12}{12} \times \frac{28}{18} \times \frac{18}{18}$ Simplify
14 4	49 36 44
$\frac{3}{3} \times \frac{3}{3} = \frac{9}{2}$	$\frac{3}{4} \times \frac{4}{5} \times \frac{9}{5}$
2 2 4	7 9 22
	$\frac{3}{2} \times \frac{2}{2} \times \frac{1}{6} = \frac{6}{6}$
	7 1 11 77

Order of Operations: BEDMAS

When simplifying expressions with more than one operation: (), \div , ×, +, –

1st Simplify Brackets first 2nd Exponents 3rd: Multiply/Divide from left to right

4th Add/Subtract from left to right

Ex: Simplify:

$$i) (3-5)^{2} \times 3 \div 2 \qquad \text{Brackets} (3-5) = -2$$

$$= (-2)^{2} \times 3 \div 2 \qquad \text{Exponents} (-2)^{2} = 4$$

$$= 4 \times 3 \div 2 \qquad \text{Multiply then Divide}$$

$$= 12 \div 2 = 6$$

$$ii) \left(\frac{8}{3}\right) - \frac{2}{8} \times \frac{8}{3} + \frac{1}{2} \qquad \text{Multiply}$$

$$= \frac{8}{3} - \frac{2}{3} + \frac{1}{2} \qquad \text{Add/Subtract}$$

$$= \frac{6}{3} + \frac{1}{2} \qquad \text{Simplify: LCD}$$

$$= \frac{12}{6} + \frac{3}{6} = \frac{15}{6} = \frac{5}{2}$$

$$iii) \left(\frac{3}{2} + 2\frac{5}{8}\right) \times 1\frac{13}{3} \qquad \text{Mixed fractions to improper}$$

$$= \left(\frac{3}{2} + \frac{21}{8}\right) \times \frac{16}{3} \qquad \text{Simplify Brackets}$$

$$= \left(\frac{12}{8} + \frac{21}{8}\right) \times \frac{16}{3} \qquad \text{Add fractions}$$

$$= \frac{39}{8} \times \frac{16}{3} = 26$$

2.7/2.8 Mult/Div. Rational Numbers

When **multiplying** rational numbers, convert them to fractions if possible. If not, then multiply by brute force or calculator.

$\frac{1}{2} = 0.5$	$\frac{1}{5} = 0.2$	$\frac{1}{8} = 0.125$	$\frac{1}{9} = 0.\overline{11}$
$\frac{1}{3} = 0.\overline{3}$	$\frac{1}{6} = 0.1\overline{6}$	$\frac{2}{8} = 0.250$	$\frac{2}{9} = 0.\overline{22}$
$\frac{1}{4} = 0.25$	$\frac{1}{7} = 0.\overline{142857}$	$\frac{3}{8} = 0.375$	$\frac{3}{9} = 0.\overline{33}$

Ex: Multiply:

<i>ii</i>)1.4×0.25	iii)3.66×0.3
_14 _ 1	_366 _1
$-\frac{10}{10}$	$-\frac{100}{3}$
-3.5 - 0.35	$-^{122}$ - 1.22
$-\frac{10}{10} = 0.55$	$-\frac{100}{100}$ - 1.22
	$ii)1.4 \times 0.25$ $= \frac{14}{10} \times \frac{1}{4}$ $= \frac{3.5}{10} = 0.35$

When **dividing** rational numbers, multiply both numbers by 10, 100, or 1000 to eliminate the decimal places. **Ex: Divde**

i) $0.3 \div 0.15 = \frac{0.3 \times 100}{0.15 \times 100} = \frac{30}{15} = 2$ ii) $-.275 \div 0.25 = \frac{-0.275 \times 1000}{0.25 \times 1000} = \frac{-275}{250} = \frac{-11}{10}$

Applications of Fractions:

Ex: $\frac{1}{3}$ of a class have black hair & $\frac{2}{5}$ have blonde hair. If there are 30 students in the class, how many have neither black or blonde hair?

$$\frac{1}{3}$$
 of $30 = 10$
 $\frac{10+12}{2} = 22$ students

30-22 = 8 students have neither black or blonde hair.

Ex: John has \$500. He spent $\frac{1}{5}$ on his car and $\frac{2}{3}$ of what was left on rent. How much money is left?

 $\frac{1}{5}$ of \$500 = \$100 (car) \rightarrow \$400 left

 $\frac{2}{3}$ of 400 = 266.66 (rent)

500 - 100 - 266.66 = 133.33 left

Ch3: Ratio and Rate 3.2: Equivalent Ratios and Proportions

Ratios compare 2 or more numbers with the same unit. Reduce the ratio by dividing all numbers by the GCF. Ratios can also be written as a fraction.

ie: $3:4 \rightarrow \frac{3}{4}$

Reducing a ratio does not change its value.

Ex: If there are 20 boys and 15 girls in a class, what is the ratio of boys to girls. 20:15 20boys:15girls

4:3 Divide by common factor of 5

Ex: There are 50 chocolate bars in a box. The ratio from O'Henry to Mars to Aero bars is 3:4:1. How many of each are there? *OHenry*: *Mars*: *Aero*

3x:4x:1x	"x" is a scale factor
3(5):4(5):1(5)	$8x = 50 \rightarrow x = 5$
$15 \cdot 20 \cdot 5 \rightarrow 15 0'$	Henry 20 Mars 5 Aero

3.4: Rate

Rates compare 2 numbers with different units.

Ex: Tom ate 30 burgers in 20minutes. At what rate can he eat burgers?

 $Divide: \frac{30burgers}{20 \min} = 1.5 burgers / \min$

3.5: Unit Rates and Unit Prices Unit rate: a rate where the 2nd term is 1 **Unit price:** the cost for 1 unit of an item. For unit prices, dollar value goes on top, and unit amount at the bottom.

Ex: 25 donuts at Tim Hortons cost \$5.00. What is the unit price for 1 donut?

 $Unit \operatorname{Pr}ice = \frac{\$5.00}{24 donuts} = \$0.21 / donut$

Ex: Job A pays \$5000 in 10 days. Job B pays \$3000 in 6 days. Find unit rate for each job & compare which job pays better? Find the unit rate of pay for each job

$$JobA: \frac{\$5600}{10} = \$560/day$$

 $JobB: \frac{\$3200}{6} = \$533.33/day$

Ex: Jake ran 75m in 11 seconds & Tom ran 200m in 28seconds. Find the unit rate for each person and compare who is faster.

Jake :
$$\frac{75m}{11s} = 6.81m/s$$

Tom : $\frac{200m}{28s} = 7.14m/s$

3.6: Scale Drawings

A scale drawing is an exact representation of an actual object that is reduced or enlarged to fit into a drawing.

All scale drawings have a **scale** that shows how much an object is enlarged or reduced. Drawing Ratio : Actual Object Ratio

ie: If scale is 1:5, then actual object is 5 times bigger than drawing.If scale is 5:1, then actual object is 5 times smaller than drawing.

Ex: The drawing of a bug is 3cm long. The scale is 5:1. How long is the actual bug? The bug is 5 times smaller than the drawing $\rightarrow 3cm \div 5 = 0.6cm$ The bug is 0.6cm or 6mm long.

Ex: The drawing of a house is 11cm tall. The scale is 1:150. How tall is the house? The house is 150 times bigger than the drawing. $\rightarrow 11cm \times 150 = 1650cm$ The house is 1650cm or 16.5m tall.

3.7: Maps & Scales

To convert units in the metric system: mm, cm, m, & km, use the following chart.

Ex: Convert 5000000mm to m.

To move from mm to m, you divide by 10 and then by 100. This is the same as dividing by 1000: $\div 10 \& \div 100 \rightarrow \div 1000$ $5000000mm \div 1000 = 5000m$

Ex: Simplify the scale: 1cm:500000km

1st convert 500000km to cm.

 $500000 \times 1000 \times 100 = 50,000,000,000cm$ The ratio is then 1:50,000,000,000. Do not need units b/c both units are the same.

Ex: The scale of a map is 1:200,000. If a lake is 3cm long on the map, how big is the actual lake in km?

 1^{st} the lake is 200,000 times bigger $3cm \times 200000 = 600,000cm$

 2^{nd} Convert 600,000cm to km. 600,000 ÷ 1000 = 600km

Ch 4: Percents

A **percent** is a ratio comparing a number to 100. 45% is 45 out of 100

 $60\% \rightarrow \frac{60}{100} = 0.6$ 57% $\rightarrow \frac{57}{100} = 0.57$

4.2/4.8: Finding Percent of a Number

When asked to find the "% of a given number", multiply the % by the number. ie; $20\% \text{ of } 300 = 0.20 \times 300 = 60$

Ex: 22.5% of 2700 students in Beaver High are from Asia. How many students are from Asia?

 $0.225 \times 2700 = 608$ students

Ex:15% of a number is 57.Find the number. Note: it's 15% "of" an unknown number" x "

0.15(x) = 57 divide both sides by "x" $x = 57 \div 0.15$ x = 380 15% of 380 is 57

Ex: 20% of a number is 12. Find 5% of that number.

Note: it's 20%	" of " an unknown number" <i>x</i> "
0.20(x) = 12	5% of 60
$x = 12 \div 0.20$	$= 0.05 \times 60$
x = 60	= 3 (5% of the number is 3)

4.3: Estimating with a Percent

When estimating with percents, round the number to the nearest dollar or percent.

Ex: Find 33% of \$895

 $33\% \rightarrow 30\%$ $$30\% \rightarrow 30% $$895 \rightarrow 900 $30\% of $900 \rightarrow 0.3 \times $900 = 270

Ex: Sara wants to give a 15% tip for a \$85 dinner. How much tip should be given?

10% of $\$85 \rightarrow 8.50$ total tip = 8.50 + 4.255% of $\$85 \rightarrow 4.25$ =12.75

4.4: Discount & Sale Price

Discount: A reduction in cost for an item Ex: A \$400 Mp3 is on sale at 35% off. What is the discount & sale price? $Discount: 0.35 \times \$400 = \140 SalePrice : \$400 - 140 = \$360.00

4.5: PST & GST

PST: Provincial Sales Tax **GST**: Goods & Services Tax

GST, PST, HST in Canadian Provinces 2007

	GST	PST	HST	Nun	6%	
Alb	6%		88888	Ont	6%	8%
BC	6%	7%		PEI	6%	10%
Man	6%	7%	3333	Queb	6%	7.5%
NB	8333	83338	14%	Sask.	6%	5%
NFL	2333	8888	14%	<i>Y.T</i> .	6%	
NS	88888	SSS 3	14%	NWT	6%	88888

Ex: If PST & GST are both 7%, what is the total cost of \$25 hat? $PST: 0.07 \times \$25 = 1.75$

 $GST: 0.07 \times \$25 = 1.75$ TotalstCost: \$25+1.75+1.75 = \$28.50

4.6: Commission

A wage that a salesperson would get based on a percentage of their sales. To find commission, multiply % with total sales.

Ex: John earns a 5% commission. How much will he earn if has \$3000 in sales? *Commission* : $0.05 \times \$3000 = \150

Ex: Cindy earns \$15/hr and a 3% on commission. How much does she earn if she worked 35hr & \$20,000 in sales?

Hourly: $\frac{15}{hr} \times 35hr = $525.^{00}$

Commission : $0.03 \times \$20,000 = \$600.^{00}$

Total: \$525 + \$600 = \$1125.00

4.10: Simple Interest

 $I = P \times r \times t$ I : Interest Earned

P: Principal, \$ in beginning

```
r : InterestRate : decimal form
```

T: Time, # of years - Divide by 12(months)

Divide by 52(weeks), Divide by 365(days)

Ex: Jerry deposited \$3500 for 8months at 2.5% interest rate. How much interest will he earn?

 $P = $3500, r = 0.025, t = \frac{8}{12}$ $I = (3500)(0.25)(\frac{8}{12})$ $I = 58^{33}

Ch5: Patterns & Relations: 5.1: Variables & Expressions:

Algebraic Expression: 3x - 8y + 7xy**Terms:** 3x, 8y, 7xy

Variables: x, y: The value of a variable can change to whatever you assign them.

When evaluating, substitute the variable with the values they are given. **Ex: Evaluate, Given** x = 2, y = 1

i) 3x - 2(y+1) ii) -4(3x+y)=3(2)-2(1+1) = -4(3(2)+1)= 6 - 4 = 2= -4(7) = -28

5.2: Formulas

When finding formulas from a table of values, look for patterns.

Ex: Find a formula for each TOV.

i)	x	-1	3	6	9	12
1/	y	9	5	2	-1	-4

Pattern: the sum of each pair adds to 8 Formula: x + y = 8

ii)	x	-1	3	6	9	12
	y	4	8	11	14	17

Pattern: y is 5 more than x

Formula: x + 5 = y

Ex: The equation for the surface area of a cylinder is $S = 2(3.14)r^2 + 2(3.14)r \times h$

Find the area when r = 4cm & h = 6cm. 1st plug in values for r & h

 $S = 2(3.14)(4)^{2} + 2(3.14)(4) \times (6)$

S = 2(3.14)16 + 2(3.14)24

S = 100.48 + 150.72

 $S = 251.2 cm^2$

5.3: Finding Ordered Pairs

With any function, every value for *x* will generate one value for y. Every pair of x & y can be mapped onto a grid as a point.

When finding ordered pairs, pick a few values for *x* and use the formula to find the values for y.

Ex: Find 5 ordered pairs from y = 3x - 5

 1^{st} : Let x = 0, 1, 2, 3, 4 2^{nd} : Solve for v Ordered Pairs: $x = 0, y = 3(0) - 5 \rightarrow y = -5$ (0, -5) $x = 1, y = 3(1) - 5 \rightarrow y = -2$ (1, -2) $x = 2, y = 3(2) - 5 \rightarrow y = 1$ (2,1) $x = 3, y = 3(3) - 5 \rightarrow y = 4$ (3,4) $x = 4, y = 3(4) - 5 \rightarrow y = 7$ (4,7)Ex: Which of the following is not an ordered pair for: 2y + 3x = 8(2,1), (1,2), (4,-3)(2,1): 2(1) + 3(2) = 8 $(1,2): 2(2) + 3(1) = 7 \leftarrow Not$ Ordered Pair

(4,-3):2(-3)+3(4)=8

5.4/5.5 Graphing Co-Ordinates (x, y)

Each coordinate is mapped onto a grid as a single point.

$$\begin{pmatrix} (X, Y) \\ \text{-coordinate} \\ \text{legative: left} \end{pmatrix} \xrightarrow{\text{y-coordinate}}_{\text{Negative: up}} \begin{array}{c} (3,-5) \rightarrow 3 \ right, \ 5down \\ (-4,8) \rightarrow 4 \ left, \ 8 \ up \\ \text{Negative: left} \end{array}$$

Origin(0.0) Y-axis Quadrant 2 Quadrant 1 -X-axis Quadrant 3 Quadrant 4

The **origin** is the center of the graph with coordinates of (0,0)

Ex: Indicate the co-ordinates for each of the following points:

Ex: Graph the following points, indicate what shape it is.

Graph each point and connect the dots

5.6 Graphing Relations:

When graphing a relation: Make a table of values, Plot each point on the grid, Make a title for the graph, Label both axis, and label a few points.

Ex: A school wants to build a rectangular fence of 20m around a playground. Write an algebraic expression for the perimeter ii) Make a table of values & iii) Graph the relations

Ch 6: Solving Equations: 6.1: Writing Equations

Terms:

Sum:Add Product: Multiply Difference: Subtract Quotient: Divide Ex: Write an equation that describes the sentence.

i) Eight less than a number is 12:

x-8=12ii) Three more than double a number is 21 2x+3=21

iii) The sum of a number and six more than double a number is 50.

x + (6 + 2x) = 50

6.2:/6.3 Solving Eq. by Add/Subtract

When solving for x, the goal is to isolate x. Do the opposite of what x is doing. If x is adding a number, then subtract that number on both sides.

Ex: Solve for x:

i) x+5=11 x+5-5=11-5 x=6ii) x-7=11 x-7+7=11+7+7x=18

6.4/6.5: Solving Eq. by Mult/Div.

If x is multiplying a number, then divide that number on both sides. In contrast, if x is dividing a number, than multiply that number on both sides. Do the opposite.

Ex: Solve for x:

i) 3x = 15ii) $\frac{x}{4} = 12$ $\frac{3x}{3} = \frac{15}{3}$ x = 5iii) $\frac{x}{4} = 12$ $4\left(\frac{x}{4}\right) = 4(12)$ x = 48

When both sides have a denominator, multiply both sides with the LCD to cancel out the denominator.

Ex: Solve for "x"

i)
$$\frac{x}{4} = \frac{8}{3}$$
 LCD: 12 ii) $\frac{5}{x} = \frac{2}{3}$ LCD: $3x$
 $12\left(\frac{x}{4}\right) = 12\left(\frac{8}{3}\right)$ $3x\left(\frac{5}{x}\right) = 3x\left(\frac{2}{3}\right)$
 $3x = 32$ $15 = 2x$
 $x = \frac{32}{3}$ $\frac{15}{2} = x$

6.6 Liketerms:

Liketerms have the same variables with the same exponents.

ie: 3x, 11x, -170x are liketerms

 $8x, 3x^2$ are not liketerms because the exponents of *x* are not the same.

Note: You could add or subtract terms ONLY if they are liketerms

Ex: Add or Subtract:

i)3x + 5x = 16	ii) $6x + 8x^2 = 14$
8x = 16	$6x \& 8x^2$ not liketerms
<i>x</i> = 2	Can't add them
iii) $6x + 5 = 8x$	Move liketerms to one side
6x + 5 - 6x = 8x - 8x = 8x - 8x = 8x - 8x = 8x = 8	6 <i>x</i>
5=2x	
2.5 = x	

6.7: /Distributive Prop.

When a number is in front of a bracket, expand that number with every term inside the brackets.

$$3(5x+3)=15x+9$$

ie: $2x(4-3x) = 8x-6x^2$

6.8/6.10:Solving Eq. with Several Steps

1st Use Distribute Property to simplify all brackets
2nd Move all liketerms to one side and combine liketerms

3rd Isolate "x"

Ex: Solve for x"

Move all liketerms *i*) 9x + 12 = 7x + 69x - 7x + 12 - 12 = 7x - 7x + 6 - 12 to one side 9x - 7x = 6 - 122x = -6x = -3*ii*) $7 = \frac{x}{3} + 2x$ Multiply all terms by LCD: 3 $3(7) = 3\left(\frac{x}{3}\right) + 3(2x)$ Cancel out Denominators 21 = x + 6x21 = 7x3 = x*iii*) 3(2x-4) = 9x+36x - 12 = 9x + 36x - 6x - 12 - 3 = 9x - 6x + 3 - 3-12 - 3 = 9x - 6x-15 = -3x5 = x

Problem Solving:

Ex: Mark has 12 dollars more than Jack. The sum of all their money is 40, how much money does each person have? Let Jack's money be x

Let Mark's money be x+12Jack's money + Mark's money = 40 x+(x+12) = 402x+12 = 402x = 28 $x = 14 \rightarrow Jack has $14, Mark has 26 Ex: The sum of three consecutive integers

is 72. Find the numbers:

Consecutive means that the numbers are in order. Ie: 1,2,3...33,34,35. Let the numbers be: x, x+1, x+2

(x) + (x+1) + (x+2) = 723x + 3 = 723x = 69

 $x = 23 \rightarrow 23, 24, 25$ are the numbers

All rights reserved. Copyright www.BCMath.ca

©Homework Depot, Vancouver, Canada Author: D.G.W. Y.

Ch 7: 2 Dimensional Polygons

Polygon: A 2D shape with 3 or more sides Triangle(3), quadrilateral(4), pentagon(5), hexagon(6), heptagon(7), octagon(8), nonagon(9), decagon(10), dodecagon(12).... Perimeter: Distance around a polygon Area: Space inside a polygon

7.1/7.2: Pythagorean Theorem

The Pythagorean Theorem can <u>only</u> be used with a **Right Angle Triangle**:

Hypotenuse MUST be the longest side. It is the opposite from the right angle

The **Base** and **Height** can be switched back and forth

Ex: Tom walks 70m East and 85m South. How far is Tom from where he started? 1^{st} find a h c: a=70 h=85 c = r

$$x^{2} = 70^{2} + 95^{2}$$

$$\begin{array}{c} 70m \\ 85m \\ r \\ \sqrt{12125} = 110m \end{array}$$

Tom is 110m from where he started.

Ex: Find the height of the triangle:

a = x, b = 40, c = 60 $x^{2} + 40^{2} = 60^{2}$ $x^{2} + 1600 = 360$

$$\begin{array}{c} 60m \\ x^2 + 1600 = 3600 \\ x^2 = 2000 \\ 40m \\ x = \sqrt{2000} = 44.7 cm \end{array}$$

Formula	NOTES	
7.5 Circumference	Circumference is the	
Circle ($\pi = 3.14$)	distance around the circle.	
	The formula depends on	
$C = 2\pi r = \pi d$	whether if you have the	
\frown	radius or the diameter.	
	Diameter = radius x 2	
7.9 Area - Circle	Area is the space inside	
	circle. You must have the	
$A = \pi r^2 ()$	radius to use the formula.	
	$(r=d \div 2) \& (r^2=r \times r)$	
	(
Area - Rectangle	Area of a Rectangle is	
$A = l \times w$	just length times width.	
	Note: For Squares, the	
	length & width of a	
w	square are the same	
Area -Triangle	The area of a Triangle is	
h×h	half of a rectangle.	
$A = \frac{b \times h}{2} = 0.5 \times b \times h$	Therefore it is divided by	
	2. The base & height	
	must be perpendicular.	
н		
$\langle \stackrel{\vee}{\longleftrightarrow} \stackrel{\vee}{\Longrightarrow} \stackrel{\vee}{\longleftrightarrow} \stackrel{\vee}{\longleftrightarrow} $		
Area Parallelogram	Area of a Parallelogram	
$A = 1 \times 10^{-1} \text{ by } b$	is the same as a rectangle.	
$A = i \times w = b \times h$	The length is the base.	
\leftarrow	The height is the width.	

Rectangle \rightarrow Rectangular Pentagon \rightarrow Pentagonal Hexagon \rightarrow Hexagonal Ie: If the base is a triangle and it's a prism →Triangular Prism

rotated so it faces down. Therefore, the formula stays the same.

Cylinders:

 $V = \pi(r^2) \times H$

The base is a circle: $A = \pi r^2$, and the height is still H. Multiply the area of the circle by the "height" to get the volume.

When finding the Surface Area, draw a net for the solid. Find the area of each surface separately and add them.

S. Area = $2(\pi)(3)^2 + (18.85)(2)$

S. Area = $94.2cm^2$

To find the Volume of a prism, first get the area of the base. Then multiply it with the height.

Ex: Find the Volume of each solid:

i) Diameter =8cm, Height =2cm

 $V = \pi (4)^2 (2)$ $V = 100.5 cm^3$

ii) Base=5cm, Hypotenuse =13cm, Height of Prism =11cm. Use pythagorus to find "h".

8.5: Composite Solids:

A 3D solid made up of 2 or more solids. When finding volumes of composite solids: separate the shape into different prisms or pyramids. Find volume of each shape separately & add/subtract.

Ex: Find the volume of each composite solid: $Vol = (\overrightarrow{l} \times w \times h) + (L \times W \times H)$ $V = (3 \times 4 \times 9) + (5 \times 4 \times 5)$ 5cm $V = 208 cm^{3}$ 4cm Volume = + $Volume = (l \times w \times h) + \left(\frac{b \times h}{2}\right) \times L$ $Volume = (15 \times 7 \times 8) + \left(\frac{7 \times 9}{2}\right) \times 15$ Volume = 1312.5cm R=: Vol = $Vol = \frac{1}{2}(b \times h) \times H - \pi r^2 H$ $V = \frac{1}{2} (10 \times 8) \times 20 - \pi (3)^2 20$ 10cm

 $V = 234.8 cm^2$

CH 9 Geometry: 9.1/9.2: Angle & Lines

Transversal: Line crossing 2 parallel lines Terms for Angles:

Complimentary: $2 \angle s$ that add to 90°

Supplementary: $2 \angle s$ that add to 180° Acute: $\angle s$ less than 90°

Obtuse: \angle 's between 90° and 180°

Straight: \angle 's equal to 180°

Vertically Opposite: Equal \angle 's opposite to each other at an intersection

ie: ∠1&∠3,∠2&∠4,∠6&∠8,∠5&∠7

Corresponding Equal \angle 's that correspond at different intersections from two parallel lines

ie: $\angle 1 \& \angle 5, \angle 2 \& \angle 6, \angle 3 \& \angle 7, \angle 4 \& \angle 8$ Alternate Interior Equal $\angle s$ that form the "Z" with the parallel lines ie: $\angle 4 \& \angle 6, \angle 3 \& \angle 5$

Co-Interior Supplementary \angle 's on the same side of a transversal between two parallel lines ie: $\angle 4 \& \angle 5, \angle 3 \& \angle 6$ **Co-Exterior** Supplementary \angle 's on the same side of a transversal on the outside of the two parallel lines. ie $\angle 2 \& \angle 7, \angle 1 \& \angle 8$

Ex: Find all missing angles:

 $\angle 1 = 50$, Vertically Opposite \angle 's $\angle 2 = 40$, Complimentary \angle 's $\angle 3 = 65$, Supplementary \angle 's

9.4: Angles in Triangles

Note: The 3 Angles in a triangle add to 180°

Terms for Triangles

Equilateral: △ with all 3 angles/sides equal All 3 ∠'s are equal to 60°. Isosceles: △ with all 2 angles/sides equal Scalene △ with no equal angles/sides Right Angle: △ with 1 angle equal to 90° Obtuse: △ with 1 angle greater than 90°

Acute: \triangle with 3 angles less than 90°

Ex: Find all missing angles:

 $\angle 1 = 55^{\circ} : Isosceles \triangle$ $\angle 2 = 70^{\circ} : \angle s in \triangle = 180^{\circ}$ $\angle 3 = 125^{\circ} : Suppl. \angle s$

 $\angle 1 = \angle 2 = 75$: Isosceles \triangle $\angle 3 = 75$: Corresponding \angle 's $\angle 4 = 105$:Supplimentary \angle 's

 $\angle 5 = 105$:Alternate Interior \angle 's $\angle 1 = 110^\circ$: Co - Exterior \angle 's

> $\angle 2 = 40^\circ$: \angle 's in \triangle $\angle 3 = 40^\circ$: Corresponding \angle 's

 $x = 75^{\circ}$

9.3 Line of Symmetry

A line that cuts a shape into two symmetrical halves.

Ex: Find all lines of Symmetry:

Ch 10: Statistics & Probability 10.1/10.2: Analyzing Data

Statistic: The science collecting, organizing and analyzing data

Survey: a process of collecting data from other people

Sample: a small group that is surveyed to represent a population

Population: The entire group is being studied.

A survey is to be unbiased, where everyone has an equal chance of being selected.

Frequency: the number of times something occurred.

To find the "Percent" divide the amount in each category by the total value.

Ex: A class of 50 students was surveyed on what their favourite color was. Use the chart to answer the following questions.

Colour	Frequency	Percent
Blue	15	$\frac{15}{50} = 30\%$
Yellow	12	$\frac{12}{50} = 24\%$
Re <i>d</i>	8	$\frac{8}{50} = 16\%$
Green	9	$\frac{9}{50} = 18\%$
Orange	6	$\frac{6}{50} = 12\%$

50

Total :

i) Which color is the most popular? Blue

10.3/10.4/10.5: Bar/Line/Circle Graphs Bar Graphs – Compares the amount of diiferent things Line Graphs - Shows how something progresses over a period of time. Circle Graphs: Shows how something is divided into smaller parts. Ex: Draw a Bar Graph showing which color is the most popular: Eavourite Color in Class

Ex: Draw a Circle showing how the class was divided on their colors:

To Find the angle, multiply each percent by 360

10.7 Mean, Median, Mode, & Range

Mean: average of all the numbers. Add all the numbers then divide by how many there are.

Median: The middle number when all the terms are arranged from least to greatest. If two numbers are in the middle, then take the average of the two.

Mode:The number that appears the most. **Range:**The difference between the biggest and the smallest value.

Ex: Given the set of numbers, find all the measures of central tendency.

3, 6, 11, 4, 5, 5, 8, 1, 5

Median: 1, 3, 4, 5, 5, 5, 6, 8, 11 \rightarrow 5

Mode:5 *Range*:11-1=10

10.11/.12 Probability & Indep. Events Probability: The likelihood of an event, ranging from 0 to 100%.

 $Pr obability = \frac{\# of \ Desired \ Outcomes}{Total \# of \ Outcomes}$

Independent Events: Events that do not affect each other. If events are independent, multiply their outcomes.

Ex: Two dice are rolled. What is the probability of getting a sum greater than 9? Create a sum chart

Ex: A coin & dice is rolled. What is the probability of getting a H & 3?

$\Pr = (head) \times (Dice:3)$				independent events
Pr =	$\frac{1}{2}$	×	$\frac{1}{6}$	$=\frac{1}{12}$